[HTML][HTML] Cervical mucus properties stratify risk for preterm birth

AS Critchfield, G Yao, A Jaishankar, RS Friedlander… - PloS one, 2013 - journals.plos.org
AS Critchfield, G Yao, A Jaishankar, RS Friedlander, O Lieleg, PS Doyle, G McKinley
PloS one, 2013journals.plos.org
Background Ascending infection from the colonized vagina to the normally sterile
intrauterine cavity is a well-documented cause of preterm birth. The primary physical barrier
to microbial ascension is the cervical canal, which is filled with a dense and protective
mucus plug. Despite its central role in separating the vaginal from the intrauterine tract, the
barrier properties of cervical mucus have not been studied in preterm birth. Methods and
Findings To study the protective function of the cervical mucus in preterm birth we performed …
Background
Ascending infection from the colonized vagina to the normally sterile intrauterine cavity is a well-documented cause of preterm birth. The primary physical barrier to microbial ascension is the cervical canal, which is filled with a dense and protective mucus plug. Despite its central role in separating the vaginal from the intrauterine tract, the barrier properties of cervical mucus have not been studied in preterm birth.
Methods and Findings
To study the protective function of the cervical mucus in preterm birth we performed a pilot case-control study to measure the viscoelasticity and permeability properties of mucus obtained from pregnant women at high-risk and low-risk for preterm birth. Using extensional and shear rheology we found that cervical mucus from women at high-risk for preterm birth was more extensible and forms significantly weaker gels compared to cervical mucus from women at low-risk of preterm birth. Moreover, permeability measurements using fluorescent microbeads show that high-risk mucus was more permeable compared with low-risk mucus.
Conclusions
Our findings suggest that critical biophysical barrier properties of cervical mucus in women at high-risk for preterm birth are compromised compared to women with healthy pregnancy. We hypothesize that impaired barrier properties of cervical mucus could contribute to increased rates of intrauterine infection seen in women with preterm birth. We furthermore suggest that a robust association of spinnbarkeit and preterm birth could be an effectively exploited biomarker for preterm birth prediction.
PLOS