Commentary 10.1172/JCI127100
Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA.
Address correspondence to: Stephen J. Galli, Department of Pathology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Room 3255b, Stanford, California 94305-5176, USA. Phone: 650.736.6014; Email: sgalli@stanford.edu.
Find articles by Galli, S. in: JCI | PubMed | Google Scholar
First published February 18, 2019 - More info
IgE-mediated activation of mast cells is a hallmark of an anaphylactic reaction to allergen. In this issue of the JCI, Duan et al. describe an approach for suppressing IgE-dependent mast cell activation, thereby suppressing anaphylaxis. Specifically, the authors show that delivery of liposomes containing both the specific antigen recognized by the mast cell–bound IgE and a high-affinity glycan ligand of the inhibitory receptor CD33 (CD33L) to targeted mast cells inhibits antigen-induced, FcεRI-dependent spleen tyrosine kinase (Syk) phosphorylation and downstream protein tyrosine kinase (PTK) phosphorylation, Ca++ flux, and β-hexosaminidase release (i.e., degranulation). However, this strategy only worked if both the antigen (reactive with the mast cell–bound IgE) and CD33L were on the same liposome. This approach promises to rapidly reduce IgE-dependent mast cell activation in response to challenge with offending allergens.
A subscription is required for you to read this article in full. If you are a subscriber, you may sign in to continue reading.
Click here to sign into your account.
Please select one of the subscription options, which includes a low-cost option just for this article.
If you are at an institution or library and believe you should have access, please check with your librarian or administrator (more information).
Please try these troubleshooting tips.