Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Deficient natural killer cell cytotoxicity in patients with IKK-γ/NEMO mutations
Jordan S. Orange, … , Zuhair K. Ballas, Raif S. Geha
Jordan S. Orange, … , Zuhair K. Ballas, Raif S. Geha
Published June 1, 2002
Citation Information: J Clin Invest. 2002;109(11):1501-1509. https://doi.org/10.1172/JCI14858.
View: Text | PDF
Categories: Article Genetics

Deficient natural killer cell cytotoxicity in patients with IKK-γ/NEMO mutations

  • Text
  • PDF
Abstract

NF-κB essential modifier (NEMO), also known as IKK-γ, is a member of the I-κB kinase complex responsible for phosphorylating I-κB, allowing the release and activation of NF-κB. Boys with an expressed NEMO mutation have an X-linked syndrome characterized by hypohidrotic ectodermal dysplasia with immune deficiency (HED-ID). The immunophenotype resulting from NEMO mutation is highly variable, with deficits in both T and B cell responses. We evaluated three patients with NEMO mutations (L153R, Q403X, and C417R) and HED-ID who had evidence of defective CD40 signaling. All three patients had normal percentages of peripheral blood NK cells, but impaired NK cell cytotoxic activity. This was not due to a generalized defect in cytotoxicity because antibody-dependent cellular cytotoxicity was intact. This abnormality was partially reversed by in vitro addition of IL-2, which was also able to induce NF-κB activation. In one patient with recurrent cytomegalovirus infections, administration of IL-2 partially corrected the NK cell killing deficit. These data suggest that NEMO participates in signaling pathways leading to NK cell cytotoxicity and that IL-2 can activate NF-κB and partially overcome the NK cell defect in patients with NEMO mutations.

Authors

Jordan S. Orange, Scott R. Brodeur, Ashish Jain, Francisco A. Bonilla, Lynda C. Schneider, Roberto Kretschmer, Samuel Nurko, Wendy L. Rasmussen, Julia R. Köhler, Stephen E. Gellis, Betsy M. Ferguson, Jack L. Strominger, Jonathan Zonana, Narayanaswamy Ramesh, Zuhair K. Ballas, Raif S. Geha

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
NEMO mutations in patients with HED-ID. A schematic diagram of the human...
NEMO mutations in patients with HED-ID. A schematic diagram of the human NEMO protein is shown with the individual domains labeled in boxes (αH, α-helix; C-C, coiled-coil; LZ, leucine zipper; ZF, zinc finger). Sequences containing amino acid substitutions in the three patients studied are displayed in brackets below the gene map. Arrows indicate positions of amino acid substitutions. The particular amino acid altered (underlined) and the substituted residues (circled) are shown. The specific nucleotide point mutation resulting in the missense amino acid is listed above the gene mutation.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts