Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Loss of nuclear pro–IL-16 facilitates cell cycle progression in human cutaneous T cell lymphoma
Clara Curiel-Lewandrowski, … , David M. Center, William W. Cruikshank
Clara Curiel-Lewandrowski, … , David M. Center, William W. Cruikshank
Published December 1, 2011; First published November 14, 2011
Citation Information: J Clin Invest. 2011;121(12):4838-4849. https://doi.org/10.1172/JCI41769.
View: Text | PDF | Retraction
Category: Research Article

Loss of nuclear pro–IL-16 facilitates cell cycle progression in human cutaneous T cell lymphoma

  • Text
  • PDF
Abstract

Cutaneous T cell lymphomas (CTCLs) represent a heterogeneous group of non-Hodgkin lymphomas that affect the skin. The pathogenesis of these conditions is poorly understood. For example, the signaling mechanisms contributing to the dysregulated growth of the neoplastic T cells are not well defined. Here, we demonstrate that loss of nuclear localization of pro–IL-16 facilitates CTCL cell proliferation by causing a decrease in expression of the cyclin dependent–kinase inhibitor p27Kip1. The decrease in p27Kip1 expression was directly attributable to an increase in expression of S-phase kinase-associated protein 2 (Skp2). Regulation of Skp2 is in part attributed to the nuclear presence of the scaffold protein pro–IL-16. T cells isolated from 11 patients with advanced CTCL, but not those from healthy controls or patients with T cell acute lymphocytic leukemia (T-ALL), demonstrated reduction in nuclear pro–IL-16 levels. Sequence analysis identified the presence of mutations in the 5ι end of the PDZ1 region of pro–IL-16, a domain required for association of pro–IL-16 with the nuclear chaperone HSC70 (also known as HSPA8). HSC70 knockdown led to loss of nuclear translocation by pro–IL-16 and subsequent increases in Skp2 levels and decreases in p27Kip1 levels, which ultimately enhanced T cell proliferation. Thus, our data indicate that advanced CTCL cell growth is facilitated, at least in part, by mutations in the scaffold protein pro–IL-16, which directly regulates Skp2 synthesis.

Authors

Clara Curiel-Lewandrowski, Hisato Yamasaki, Chuan Ping Si, Xiaoyi Jin, Yujun Zhang, Jillian Richmond, Marina Tuzova, Kevin Wilson, Beth Sullivan, David Jones, Nataliya Ryzhenko, Frederick Little, Thomas S. Kupper, David M. Center, William W. Cruikshank

×

Figure 2

Intracellular detection of pro–IL-16.

Options: View larger image (or click on image) Download as PowerPoint
Intracellular detection of pro–IL-16.
Primary CD4+ T cells obtained from...
Primary CD4+ T cells obtained from normal controls, patients with T-ALL, or patients with advanced CTCL were isolated and intracellularly labeled for pro–IL-16 protein by antibody staining. Isotype control staining is shown in the open curves, while IL-16 detection is shown in the filled curves. Numbers represent the percentage of pro–IL-16+ cells based on the gating strategy, as indicated by the dashed lines. The patient numbers are shown in the top left corners and match patient numbers as identified in Figure 1.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts