Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Neuronal GLP1R mediates liraglutide’s anorectic but not glucose-lowering effect
Stephanie Sisley, … , Darleen A. Sandoval, Randy J. Seeley
Stephanie Sisley, … , Darleen A. Sandoval, Randy J. Seeley
Published June 2, 2014; First published April 24, 2014
Citation Information: J Clin Invest. 2014;124(6):2456-2463. https://doi.org/10.1172/JCI72434.
View: Text | PDF
Category: Research Article

Neuronal GLP1R mediates liraglutide’s anorectic but not glucose-lowering effect

  • Text
  • PDF
Abstract

Glucose control and weight loss are cornerstones of type 2 diabetes treatment. Currently, only glucagon-like peptide-1 (GLP1) analogs are able to achieve both weight loss and glucose tolerance. Both glucose and body weight are regulated by the brain, which contains GLP1 receptors (GLP1R). Even though the brain is poised to mediate the effects of GLP1 analogs, it remains unclear whether the glucose- and body weight–lowering effects of long-acting GLP1R agonists are via direct action on CNS GLP1R or the result of downstream activation of afferent neuronal GLP1R. We generated mice with either neuronal or visceral nerve-specific deletion of Glp1r and then administered liraglutide, a long-acting GLP1R agonist. We found that neither reduction of GLP1R in the CNS nor in the visceral nerves resulted in alterations in body weight or food intake in animals fed normal chow or a high-fat diet. Liraglutide treatment provided beneficial glucose-lowering effects in both chow- and high-fat–fed mice lacking GLP1R in the CNS or visceral nerves; however, liraglutide was ineffective at altering food intake, body weight, or causing a conditioned taste aversion in mice lacking neuronal GLP1R. These data indicate that neuronal GLP1Rs mediate body weight and anorectic effects of liraglutide, but are not required for glucose-lowering effects.

Authors

Stephanie Sisley, Ruth Gutierrez-Aguilar, Michael Scott, David A. D’Alessio, Darleen A. Sandoval, Randy J. Seeley

×

Figure 1

Characterization of GLP1R KDΔNestin and GLP1R KDΔPhox2b mice.

Options: View larger image (or click on image) Download as PowerPoint
Characterization of GLP1R KDΔNestin and GLP1R KDΔPhox2b mice.
(A) Glp1r ...
(A) Glp1r floxed construct. (B) Body weight analysis of chow-fed Glp1r mutant mice. (C) Body composition analysis on chow diet. (D) Body weight analysis of high-fat–fed Glp1r mutant mice. (E) Body composition analysis after 7 weeks of high-fat diet. (F) Seven-day high-fat diet intake. Statistical analysis was with 2-way ANOVA (B–E) or 1-way ANOVA (F) with Tukey’s post-hoc. Black, controls; red, GLP1R KDΔNestin; gray, GLP1R KDΔPhox2b.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts