Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R–mediated apoptosis
Thomas Condamine, … , Thomas Bauer, Dmitry I. Gabrilovich
Thomas Condamine, … , Thomas Bauer, Dmitry I. Gabrilovich
Published June 2, 2014; First published May 1, 2014
Citation Information: J Clin Invest. 2014;124(6):2626-2639. https://doi.org/10.1172/JCI74056.
View: Text | PDF
Categories: Research Article Immunology

ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R–mediated apoptosis

  • Text
  • PDF
Abstract

Myeloid-derived suppressor cells (MDSCs) dampen the immune response thorough inhibition of T cell activation and proliferation and often are expanded in pathological conditions. Here, we studied the fate of MDSCs in cancer. Unexpectedly, MDSCs had lower viability and a shorter half-life in tumor-bearing mice compared with neutrophils and monocytes. The reduction of MDSC viability was due to increased apoptosis, which was mediated by increased expression of TNF-related apoptosis–induced ligand receptors (TRAIL-Rs) in these cells. Targeting TRAIL-Rs in naive mice did not affect myeloid cell populations, but it dramatically reduced the presence of MDSCs and improved immune responses in tumor-bearing mice. Treatment of myeloid cells with proinflammatory cytokines did not affect TRAIL-R expression; however, induction of ER stress in myeloid cells recapitulated changes in TRAIL-R expression observed in tumor-bearing hosts. The ER stress response was detected in MDSCs isolated from cancer patients and tumor-bearing mice, but not in control neutrophils or monocytes, and blockade of ER stress abrogated tumor-associated changes in TRAIL-Rs. Together, these data indicate that MDSC pathophysiology is linked to ER stress, which shortens the lifespan of these cells in the periphery and promotes expansion in BM. Furthermore, TRAIL-Rs can be considered as potential targets for selectively inhibiting MDSCs.

Authors

Thomas Condamine, Vinit Kumar, Indu R. Ramachandran, Je-In Youn, Esteban Celis, Niklas Finnberg, Wafik S. El-Deiry, Rafael Winograd, Robert H. Vonderheide, Nickolas R. English, Stella C. Knight, Hideo Yagita, Judith C. McCaffrey, Scott Antonia, Neil Hockstein, Robert Witt, Gregory Masters, Thomas Bauer, Dmitry I. Gabrilovich

×

Figure 4

DR5 targeting results in selective MDSC elimination.

Options: View larger image (or click on image) Download as PowerPoint
DR5 targeting results in selective MDSC elimination.
(A and B) Splenic P...
(A and B) Splenic PMNs and PMN-MDSCs were cultured overnight in complete media supplemented with 10 ng/ml GM-CSF, in a plate coated with MD5-1 mAb or control IgG (10 μg/ml). After 20 hours, percentages of annexin V+ cells (A) and survival (B) were determined. Results are representative of 3 different experiments. (C) Total MDSCs, PMN-MDSCs, and M-MDSCs in EL4 TB spleens, measured by flow cytometry. Treatment with control IgG and MD5-1 mAb (100 μg) was initiated on day 17 after tumor inoculation, when tumor diameter reached 1.5 cm, and repeated on days 20 and 23; mice were sacrificed on day 24. (n = 4). (D) EG7 TB mice were treated with MD5-1 mAb (100 μg) and/or anti-CD8 mAb (200 μg) or left untreated, and tumor growth was determined (n = 4 per group). (E) On day 28 after tumor inoculation, mice were sacrificed; splenic T cells were enriched and stimulated in the presence of control DCs, loaded with OVA or irrelevant protein. IFN-γ secretion was assessed by Elispot after 48 hours of restimulation (n = 3). (F) Naive (freshly isolated) or activated (3 days culture with 100 ng/ml SIINFEKL) OT-I splenocytes were stimulated with control or specific peptide (100 ng/ml SIINFEKL) in the presence of control IgG or MD5-1 mAb (10 μg/ml). IFN-γ secretion was assessed by Elispot after 48 hours of restimulation (n = 3). (G) EL4 TB mice were treated with anti-CTLA4 and/or anti–MD5-1 mAb (100 μg each) or left untreated, and tumor growth was determined (n = 4 per group). *P < 0.05; **P < 0.01.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts